AT-HP

High Performance Resin

AT-HP is a styrene free methacrylate resin suitable for high performance fixing applications in threaded rod into concrete.

  • Easy to dispense and fast curing, it's specially designed for structural fixings and construction uses.
  • ETA Option 8 for threaded rod and rebar
CE Marking
ETA
Fire resistance R 30
Indoor
Outdoor
Dist. bord et entraxe faible

Product Details

Images

Features

Material

  • Styrene free methacrylate resin.
  • Threaded rod: galvanised steel and stainless steel A4-70.

Benefits

  • Fast curing.
  • Low odour.
  • Non-flammable.
  • Easy to dispense.

Application

Header member

  • Non-cracked concrete.
  • Solid blocks.
  • Hollow blocks.
  • AAC Blocks.

For Use With

  • Threaded rod and rebar connections.
  • Racking.
  • Balconies.
  • Facades.

Technical Data

Références

References Product information
DB nr. NOBB nr. Grey color Beige color Content [ml] Weight [kg] Packaging qty [pcs]
ATHP300G-FR--x-3000.57512
ATHP420G-FR--x-4200.82812

Design resistance – Tension – NRd [kN] – hef = 8d – Carbon steel 5.8

References Design resistance – hef = 8d – Carbon steel 5.8
Tension - NRd [kN]
Cracked concrete Non-cracked concrete
C20/25 C30/37 C40/50 C50/60 C20/25 C30/37 C40/50 C50/60
AT-HP + LMAS M8----10.7121212
AT-HP + LMAS M10----15.917.819.319.3
AT-HP + LMAS M128.48.899.221.724.326.728
AT-HP + LMAS M161515.616.116.434.338.442.244.6
AT-HP + LMAS M20----50.256.361.865.3
AT-HP + LMAS M24----67.575.683.187.8

Concrete :
1. The design loads have been calculated using the partial safety factors for resistances stated in ETA-approval(s). The loading figures are valid for unreinforced concrete and reinforced concrete with a rebar spacing s ≥ 15 cm (any diameter) or with a rebar spacing s ≥ 10 cm, if the rebar diameter is 10mm or smaller.
2. The figures for shear are based on a single anchor without influence of concrete edges. For anchorages close to edges (c ≤ max [10 hef; 60d]) the concrete edge failure shall be checked per ETAG 001, Annex C, design method A.
3. Concrete is considered non-cracked when the tensile stress within the concrete is\sigmaL +\sigmaR ≤ 0. In the absence of detailed verification\sigmaR = 3 N/mm² can be assumed (\sigmaL equals the tensile stress within the concrete induced by external loads, anchors loads included).

 

Design resistance – Tension – NRd [kN] – hef = 12d – Carbon steel 5.8

References Design resistance – hef = 12d – Carbon steel 5.8
Tension - NRd [kN]
Cracked concrete Non-cracked concrete
C20/25 C30/37 C40/50 C50/60 C20/25 C30/37 C40/50 C50/60
AT-HP + LMAS M8----12121212
AT-HP + LMAS M10----19.319.319.319.3
AT-HP + LMAS M1212.713.213.513.828282828
AT-HP + LMAS M1622.523.424.124.551.452.752.752.7
AT-HP + LMAS M20----75.4828282
AT-HP + LMAS M24----101.3113.4118118

Concrete :
1. The design loads have been calculated using the partial safety factors for resistances stated in ETA-approval(s). The loading figures are valid for unreinforced concrete and reinforced concrete with a rebar spacing s ≥ 15 cm (any diameter) or with a rebar spacing s ≥ 10 cm, if the rebar diameter is 10mm or smaller.
2. The figures for shear are based on a single anchor without influence of concrete edges. For anchorages close to edges (c ≤ max [10 hef; 60d]) the concrete edge failure shall be checked per ETAG 001, Annex C, design method A.
3. Concrete is considered non-cracked when the tensile stress within the concrete is\sigmaL +\sigmaR ≤ 0. In the absence of detailed verification\sigmaR = 3 N/mm² can be assumed (\sigmaL equals the tensile stress within the concrete induced by external loads, anchors loads included).

 

Design resistance – Tension – NRd [kN] – hef = 8d – Stainless steel A4-70

References Design resistance – hef = 8d – Stainless steel A4-70
Tension - NRd [kN]
Cracked concrete Non-cracked concrete
C20/25 C30/37 C40/50 C50/60 C20/25 C30/37 C40/50 C50/60
AT-HP + LMAS M8----10.71213.213.9
AT-HP + LMAS M10----15.917.819.620.7
AT-HP + LMAS M128.48.899.221.724.326.728.2
AT-HP + LMAS M161515.616.116.434.338.442.244.6
AT-HP + LMAS M20----50.256.361.865.3
AT-HP + LMAS M24----67.575.683.187.8

Concrete :
1. The design loads have been calculated using the partial safety factors for resistances stated in ETA-approval(s). The loading figures are valid for unreinforced concrete and reinforced concrete with a rebar spacing s ≥ 15 cm (any diameter) or with a rebar spacing s ≥ 10 cm, if the rebar diameter is 10mm or smaller.
2. The figures for shear are based on a single anchor without influence of concrete edges. For anchorages close to edges (c ≤ max [10 hef; 60d]) the concrete edge failure shall be checked per ETAG 001, Annex C, design method A.
3. Concrete is considered non-cracked when the tensile stress within the concrete is\sigmaL +\sigmaR ≤ 0. In the absence of detailed verification\sigmaR = 3 N/mm² can be assumed (\sigmaL equals the tensile stress within the concrete induced by external loads, anchors loads included).

 

Design resistance – Tension – NRd [kN] – hef = 12d – Stainless steel A4-70

References Design resistance – hef = 12d – Stainless steel A4-70
Tension - NRd [kN]
Cracked concrete Non-cracked concrete
C20/25 C30/37 C40/50 C50/60 C20/25 C30/37 C40/50 C50/60
AT-HP + LMAS M8----13.913.913.913.9
AT-HP + LMAS M10----21.921.921.921.9
AT-HP + LMAS M1212.713.213.513.831.631.631.631.6
AT-HP + LMAS M1622.523.424.124.551.457.658.858.8
AT-HP + LMAS M20----75.484.49292
AT-HP + LMAS M24----101.3113.4124.6131.7

Concrete :
1. The design loads have been calculated using the partial safety factors for resistances stated in ETA-approval(s). The loading figures are valid for unreinforced concrete and reinforced concrete with a rebar spacing s ≥ 15 cm (any diameter) or with a rebar spacing s ≥ 10 cm, if the rebar diameter is 10mm or smaller.
2. The figures for shear are based on a single anchor without influence of concrete edges. For anchorages close to edges (c ≤ max [10 hef; 60d]) the concrete edge failure shall be checked per ETAG 001, Annex C, design method A.
3. Concrete is considered non-cracked when the tensile stress within the concrete is\sigmaL +\sigmaR ≤ 0. In the absence of detailed verification\sigmaR = 3 N/mm² can be assumed (\sigmaL equals the tensile stress within the concrete induced by external loads, anchors loads included).

 

Design resistance – Shear – VRd [kN] – hef = 8d – Carbon steel 5.8

References Design resistance – hef = 8d – Carbon steel 5.8
Shear - VRd [kN]
Cracked concrete Non-cracked concrete
C20/25 C30/37 C40/50 C50/60 C20/25 C30/37 C40/50 C50/60
AT-HP + LMAS M8----7.27.27.27.2
AT-HP + LMAS M10----12121212
AT-HP + LMAS M1216.816.816.816.816.816.816.816.8
AT-HP + LMAS M163031.231.231.231.231.231.231.2
AT-HP + LMAS M20----48.848.848.848.8
AT-HP + LMAS M24----70.470.470.470.4

Concrete :
1. The design loads have been calculated using the partial safety factors for resistances stated in ETA-approval(s). The loading figures are valid for unreinforced concrete and reinforced concrete with a rebar spacing s ≥ 15 cm (any diameter) or with a rebar spacing s ≥ 10 cm, if the rebar diameter is 10mm or smaller.
2. The figures for shear are based on a single anchor without influence of concrete edges. For anchorages close to edges (c ≤ max [10 hef; 60d]) the concrete edge failure shall be checked per ETAG 001, Annex C, design method A.
3. Concrete is considered non-cracked when the tensile stress within the concrete is\sigmaL +\sigmaR ≤ 0. In the absence of detailed verification\sigmaR = 3 N/mm² can be assumed (\sigmaL equals the tensile stress within the concrete induced by external loads, anchors loads included).

 

Design resistance – Shear – VRd [kN] – hef = 12d – Carbon steel 5.8

References Design resistance – hef = 12d – Carbon steel 5.8
Shear - VRd [kN]
Cracked concrete Non-cracked concrete
C20/25 C30/37 C40/50 C50/60 C20/25 C30/37 C40/50 C50/60
AT-HP + LMAS M8----7.27.27.27.2
AT-HP + LMAS M10----12121212
AT-HP + LMAS M1216.816.816.816.816.816.816.816.8
AT-HP + LMAS M1631.231.231.231.231.231.231.231.2
AT-HP + LMAS M20----48.848.848.848.8
AT-HP + LMAS M24----70.470.470.470.4

Concrete :
1. The design loads have been calculated using the partial safety factors for resistances stated in ETA-approval(s). The loading figures are valid for unreinforced concrete and reinforced concrete with a rebar spacing s ≥ 15 cm (any diameter) or with a rebar spacing s ≥ 10 cm, if the rebar diameter is 10mm or smaller.
2. The figures for shear are based on a single anchor without influence of concrete edges. For anchorages close to edges (c ≤ max [10 hef; 60d]) the concrete edge failure shall be checked per ETAG 001, Annex C, design method A.
3. Concrete is considered non-cracked when the tensile stress within the concrete is\sigmaL +\sigmaR ≤ 0. In the absence of detailed verification\sigmaR = 3 N/mm² can be assumed (\sigmaL equals the tensile stress within the concrete induced by external loads, anchors loads included).

 

Design resistance – Shear – VRd [kN] – hef = 8d – Stainless steel A4-70

References Design resistance – hef = 8d – Stainless steel A4-70
Shear - VRd [kN]
Cracked concrete Non-cracked concrete
C20/25 C30/37 C40/50 C50/60 C20/25 C30/37 C40/50 C50/60
AT-HP + LMAS M8----8.38.38.38.3
AT-HP + LMAS M10----12.812.812.812.8
AT-HP + LMAS M1216.917.618.118.419.219.219.219.2
AT-HP + LMAS M163031.232.132.735.335.335.335.3
AT-HP + LMAS M20----55.155.155.155.1
AT-HP + LMAS M24----79.579.579.579.5

Concrete :
1. The design loads have been calculated using the partial safety factors for resistances stated in ETA-approval(s). The loading figures are valid for unreinforced concrete and reinforced concrete with a rebar spacing s ≥ 15 cm (any diameter) or with a rebar spacing s ≥ 10 cm, if the rebar diameter is 10mm or smaller.
2. The figures for shear are based on a single anchor without influence of concrete edges. For anchorages close to edges (c ≤ max [10 hef; 60d]) the concrete edge failure shall be checked per ETAG 001, Annex C, design method A.
3. Concrete is considered non-cracked when the tensile stress within the concrete is\sigmaL +\sigmaR ≤ 0. In the absence of detailed verification\sigmaR = 3 N/mm² can be assumed (\sigmaL equals the tensile stress within the concrete induced by external loads, anchors loads included).

 

Design resistance – Shear - VRd [kN] – hef = 12d – Stainless steel A4-70

References Design resistance – hef = 12d – Stainless steel A4-70
Shear - VRd [kN]
Cracked concrete Non-cracked concrete
C20/25 C30/37 C40/50 C50/60 C20/25 C30/37 C40/50 C50/60
AT-HP + LMAS M8----8.38.38.38.3
AT-HP + LMAS M10----12.812.812.812.8
AT-HP + LMAS M1219.219.219.219.219.219.219.219.2
AT-HP + LMAS M1635.335.335.335.335.335.335.335.3
AT-HP + LMAS M20----55.155.155.155.1
AT-HP + LMAS M24----79.579.579.579.5

Concrete :
1. The design loads have been calculated using the partial safety factors for resistances stated in ETA-approval(s). The loading figures are valid for unreinforced concrete and reinforced concrete with a rebar spacing s ≥ 15 cm (any diameter) or with a rebar spacing s ≥ 10 cm, if the rebar diameter is 10mm or smaller.
2. The figures for shear are based on a single anchor without influence of concrete edges. For anchorages close to edges (c ≤ max [10 hef; 60d]) the concrete edge failure shall be checked per ETAG 001, Annex C, design method A.
3. Concrete is considered non-cracked when the tensile stress within the concrete is\sigmaL +\sigmaR ≤ 0. In the absence of detailed verification\sigmaR = 3 N/mm² can be assumed (\sigmaL equals the tensile stress within the concrete induced by external loads, anchors loads included).

 

Design resistance – Bending moment – MRd [Nm] – Concrete

References Design resistance – Bending moment – MRd [Nm]
Carbon steel 5.8 Stainless steel A4-70
AT-HP + LMAS M815.216.7
AT-HP + LMAS M1029.634
AT-HP + LMAS M1252.859
AT-HP + LMAS M16133.6149.4
AT-HP + LMAS M20260.8291
AT-HP + LMAS M24448.8502.6

Concrete :
1. The design loads have been calculated using the partial safety factors for resistances stated in ETA-approval(s). The loading figures are valid for unreinforced concrete and reinforced concrete with a rebar spacing s ≥ 15 cm (any diameter) or with a rebar spacing s ≥ 10 cm, if the rebar diameter is 10mm or smaller.
2. The figures for shear are based on a single anchor without influence of concrete edges. For anchorages close to edges (c ≤ max [10 hef; 60d]) the concrete edge failure shall be checked per ETAG 001, Annex C, design method A.
3. Concrete is considered non-cracked when the tensile stress within the concrete is\sigmaL +\sigmaR ≤ 0. In the absence of detailed verification\sigmaR = 3 N/mm² can be assumed (\sigmaL equals the tensile stress within the concrete induced by external loads, anchors loads included).

 

Design resistance – Tension – NRd [kN] – Rebar

References Design resistance – NRd – Carbon steel 5.8 [kN]
Non-cracked concrete
hef = 8d hef = 12d
C20/25 C30/37 C40/50 C50/60 C20/25 C30/37 C40/50 C50/60
AT-HP + Ø86.377.78.19.410.511.512.2
AT-HP + Ø1010.511.712.913.615.717.619.320.4
AT-HP + Ø1214.115.817.318.321.123.62627.4
AT-HP + Ø1419.121.423.624.928.732.235.337.3
AT-HP + Ø1623.22628.634.834.83942.852.2
AT-HP + Ø2036.340.644.647.254.46166.970.8
AT-HP + Ø2552.358.664.46878.587.996.6102.1

Design resistance – Shear – VRd [kN] – Rebar

References Design resistance – VRd – Carbon steel 5.8 [kN]
Non-cracked concrete
hef = 8d hef = 12d
C20/25 C30/37 C40/50 C50/60 C20/25 C30/37 C40/50 C50/60
AT-HP + Ø89.39.39.39.39.39.39.39.3
AT-HP + Ø1014.714.714.714.714.714.714.714.7
AT-HP + Ø1220.720.720.720.720.720.720.720.7
AT-HP + Ø142828282828282828
AT-HP + Ø1636.736.736.736.736.736.736.736.7
AT-HP + Ø2057.357.357.357.357.357.357.357.3
AT-HP + Ø259090909090909090

Design resistance – Bending moment – MRd [Nm] – Rebar

References Design resistance – Bending moment – MRd [Nm]
AT-HP + Ø822
AT-HP + Ø1043.3
AT-HP + Ø1274.7
AT-HP + Ø14118.7
AT-HP + Ø16176.7
AT-HP + Ø20345.3
AT-HP + Ø25674.7

Installation

Installation

Curing Schedule

Temperature of the anchorage base

Tbase material

Working time (Gel time)

tgel

Curing time (in dry concrete)

tcure, dry

Curing time (in wet concrete)

tcure, wet

0°C ≤ Tbase material < +5°C25 min90 min3:00 h
5°C ≤ Tbase material < +10°C17 min70 min2:20 h
10°C ≤ Tbase material < +20°C12 min65 min2:10 h
20°C ≤ Tbase material < +30°C6 min60 min2:00 h
30°C ≤ Tbase material ≤ +40°C3 min45 min1:30 h

• Manual Air Cleaning (MAC) for all drill hole diameters d0 ≤ 24 mm and drill holl depth h0 ≤ 10d : 
          4x blowing (hand pump)
          4x brushing
          4x blowing (Hand pump)

• Compressed Air Cleaning (CAC) for all drill hole diameters d0 and drill hole depths :
          2x blowing (min. 6 bar - oil free compressed air)
          2x brushing
          2x blowing (min. 6 bar - oil free compressed air)

• Cartridge temperature (Bond material) : ≥ +20°C

Drilling methods

Solid brick/concretePercussion/hammer drilling
Hollow/perforated brickRotation drilling
Aerated concretePercussion/hammer drilling

Installation parameters – Concrete

References Installation parameters - Concrete
Ø drilling [d0] [mm] Max. fixture hole Ø [df] [mm] Drilling depth (8d) [h0=hef=8d] [mm] Drilling depth (12d) [h0=hef=12d] [mm] Wrench size [SW] Installation torque [Tinst] [Nm]
AT-HP + LMAS M810964961310
AT-HP + LMAS M101212801201720
AT-HP + LMAS M121414961441930
AT-HP + LMAS M1618181281922460
AT-HP + LMAS M2024221602403090
AT-HP + LMAS M24282619228836140

Spacing, edge distances and member thickness - Concrete

References Spacing, edge distance and member thickness - Concrete
Effective embedment depth (8d) [hef,8d] [mm] Characteristic spacing for hef,8d [Scr,N] [mm] Characteristic edge distance for hef,8d [ccr,N] [mm] Min. member thickness for hef,8d [hmin] [mm] Effective embedment depth (12d) [hef,12d] [mm] Characteristic spacing for hef,12d [Scr,N] [mm] Characteristic edge distance for hef,12d [ccr,N] [mm] Min. member thickness for hef,12d [hmin] [mm] Min. spacing [Smin] [mm] Min. edge distance [Cmin] [mm]
AT-HP + LMAS M86419296100962881441004040
AT-HP + LMAS M10802401201101203601801505050
AT-HP + LMAS M12962881441261444322161746060
AT-HP + LMAS M161283841921581925762882228080
AT-HP + LMAS M20160480240190240720360270100100
AT-HP + LMAS M24192576288222288864432318120120

Installation parameters – Rebar

References Installation parameters - Rebar
Ø drilling [d0] [mm] Drilling depth (8d) [h0=hef=8d] [mm] Drilling depth (12d) [h0=hef=12d] [mm]
AT-HP + Ø8126496
AT-HP + Ø101480120
AT-HP + Ø121696144
AT-HP + Ø1418112168
AT-HP + Ø1620128192
AT-HP + Ø2025160240
AT-HP + Ø2532200300

Spacing, edge distances and member thickness – Rebar

References Spacing, edge distance and member thickness - Rebar
Effective embedment depth (8d) [hef,8d] [mm] Characteristic spacing for hef,8d [Scr,N] [mm] Characteristic edge distance for hef,8d [ccr,N] [mm] Min. member thickness for hef,8d [hmin] [mm] Effective embedment depth (12d) [hef,12d] [mm] Characteristic spacing for hef,12d [Scr,N] [mm] Characteristic edge distance for hef,12d [ccr,N] [mm] Min. member thickness for hef,12d [hmin] [mm] Min. spacing [Smin] [mm] Min. edge distance [Cmin] [mm]
AT-HP + Ø86419296100962881441004040
AT-HP + Ø10802401201101203601801505050
AT-HP + Ø12962881441261444322161746060
AT-HP + Ø141123361681481685042522047070
AT-HP + Ø161283841921681925762882328080
AT-HP + Ø20160480240210240720360290100100
AT-HP + Ø25200600300264300900450364125125

Certification

Declaration of Performance (DoP)

European Technical Assessment (ETA)

Buy from Distributor

No items available.

Contact

Simpson Strong-Tie Poland

Simpson Strong-Tie Sp. z o.o.

ul. Karczunkowska 42
02-871 Warszawa
Poland